技術(shù)文章
紫外吸收光譜 UV
分析原理:吸收紫外光能量,引起分子中電子能級(jí)的躍遷
譜圖的表示方法:相對(duì)吸收光能量隨吸收光波長的變化
提供的信息:吸收峰的位置、強(qiáng)度和形狀,提供分子中不同電子結(jié)構(gòu)的信息
熒光光譜法 FS
分析原理:被電磁輻射激發(fā)后,從ZUI低單線激發(fā)態(tài)回到單線基態(tài),發(fā)射熒光
譜圖的表示方法:發(fā)射的熒光能量隨光波長的變化
提供的信息:熒光效率和壽命,提供分子中不同電子結(jié)構(gòu)的信息
紅外吸收光譜法 IR
分析原理:吸收紅外光能量,引起具有偶極矩變化的分子的振動(dòng)、轉(zhuǎn)動(dòng)能級(jí)躍遷
譜圖的表示方法:相對(duì)透射光能量隨透射光頻率變化
提供的信息:峰的位置、強(qiáng)度和形狀,提供功能團(tuán)或化學(xué)鍵的特征振動(dòng)頻率
拉曼光譜法 Ram
分析原理:吸收光能后,引起具有極化率變化的分子振動(dòng),產(chǎn)生拉曼散射
譜圖的表示方法:散射光能量隨拉曼位移的變化
提供的信息:峰的位置、強(qiáng)度和形狀,提供功能團(tuán)或化學(xué)鍵的特征振動(dòng)頻率
核磁共振波譜法 NMR
分析原理:在外磁場(chǎng)中,具有核磁矩的原子核,吸收射頻能量,產(chǎn)生核自旋能級(jí)的躍遷
譜圖的表示方法:吸收光能量隨化學(xué)位移的變化
提供的信息:峰的化學(xué)位移、強(qiáng)度、裂分?jǐn)?shù)和偶合常數(shù),提供核的數(shù)目、所處化學(xué)環(huán)境和幾何構(gòu)型的信息
電子順磁共振波譜法 ESR
分析原理:在外磁場(chǎng)中,分子中未成對(duì)電子吸收射頻能量,產(chǎn)生電子自旋能級(jí)躍遷
譜圖的表示方法:吸收光能量或微分能量隨磁場(chǎng)強(qiáng)度變化
提供的信息:譜線位置、強(qiáng)度、裂分?jǐn)?shù)目和超精細(xì)分裂常數(shù),提供未成對(duì)電子密度、分子鍵特性及幾何構(gòu)型信息
質(zhì)譜分析法 MS
分析原理:分子在真空中被電子轟擊,形成離子,通過電磁場(chǎng)按不同m/e分離
譜圖的表示方法:以棒圖形式表示離子的相對(duì)峰度隨m/e的變化
提供的信息:分子離子及碎片離子的質(zhì)量數(shù)及其相對(duì)峰度,提供分子量,元素組成及結(jié)構(gòu)的信息
氣相色譜法 GC
分析原理:樣品中各組分在流動(dòng)相和固定相之間,由于分配系數(shù)不同而分離
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:峰的保留值與組分熱力學(xué)參數(shù)有關(guān),是定性依據(jù);峰面積與組分含量有關(guān)
反氣相色譜法 IGC
分析原理:探針分子保留值的變化取決于它和作為固定相的聚合物樣品之間的相互作用力
譜圖的表示方法:探針分子比保留體積的對(duì)數(shù)值隨柱溫倒數(shù)的變化曲線
提供的信息:探針分子保留值與溫度的關(guān)系提供聚合物的熱力學(xué)參數(shù)
裂解氣相色譜法 PGC
分析原理:高分子材料在一定條件下瞬間裂解,可獲得具有一定特征的碎片
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:譜圖的指紋性或特征碎片峰,表征聚合物的化學(xué)結(jié)構(gòu)和幾何構(gòu)型
凝膠色譜法 GPC
分析原理:樣品通過凝膠柱時(shí),按分子的流體力學(xué)體積不同進(jìn)行分離,大分子先流出
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:高聚物的平均分子量及其分布
熱重法 TG
分析原理:在控溫環(huán)境中,樣品重量隨溫度或時(shí)間變化
譜圖的表示方法:樣品的重量分?jǐn)?shù)隨溫度或時(shí)間的變化曲線
提供的信息:曲線陡降處為樣品失重區(qū),平臺(tái)區(qū)為樣品的熱穩(wěn)定區(qū)
熱差分析 DTA
分析原理:樣品與參比物處于同一控溫環(huán)境中,由于二者導(dǎo)熱系數(shù)不同產(chǎn)生溫差,記錄溫度隨環(huán)境溫度或時(shí)間的變化
譜圖的表示方法:溫差隨環(huán)境溫度或時(shí)間的變化曲線
提供的信息:提供聚合物熱轉(zhuǎn)變溫度及各種熱效應(yīng)的信息
示差掃描量熱分析 DSC
分析原理:樣品與參比物處于同一控溫環(huán)境中,記錄維持溫差為零時(shí),所需能量隨環(huán)境溫度或時(shí)間的變化
譜圖的表示方法:熱量或其變化率隨環(huán)境溫度或時(shí)間的變化曲線
提供的信息:提供聚合物熱轉(zhuǎn)變溫度及各種熱效應(yīng)的信息
靜態(tài)熱―力分析 TMA
分析原理:樣品在恒力作用下產(chǎn)生的形變隨溫度或時(shí)間變化
譜圖的表示方法:樣品形變值隨溫度或時(shí)間變化曲線
提供的信息:熱轉(zhuǎn)變溫度和力學(xué)狀態(tài)
動(dòng)態(tài)熱―力分析 DMA
分析原理:樣品在周期性變化的外力作用下產(chǎn)生的形變隨溫度的變化
譜圖的表示方法:模量或tgδ隨溫度變化曲線
提供的信息:熱轉(zhuǎn)變溫度模量和tgδ
透射電子顯微術(shù) TEM
分析原理:高能電子束穿透試樣時(shí)發(fā)生散射、吸收、干涉和衍射,使得在相平面形成襯度,顯示出圖象
譜圖的表示方法:質(zhì)厚襯度象、明場(chǎng)衍襯象、暗場(chǎng)衍襯象、晶格條紋象、和分子象
提供的信息:晶體形貌、分子量分布、微孔尺寸分布、多相結(jié)構(gòu)和晶格與缺陷等
掃描電子顯微術(shù) SEM
分析原理:用電子技術(shù)檢測(cè)高能電子束與樣品作用時(shí)產(chǎn)生二次電子、背散射電子、吸收電子、X射線等并放大成象
譜圖的表示方法:背散射象、二次電子象、吸收電流象、元素的線分布和面分布等
提供的信息:斷口形貌、表面顯微結(jié)構(gòu)、薄膜內(nèi)部的顯微結(jié)構(gòu)、微區(qū)元素分析與定量元素分析等
原子吸收 AAS
原理:通過原子化器將待測(cè)試樣原子化,待測(cè)原子吸收待測(cè)元素空心陰極燈的光,從而使用檢測(cè)器檢測(cè)到的能量變低,從而得到吸光度。吸光度與待測(cè)元素的濃度成正比。
電感耦合高頻等離子體 ICP
原理:利用氬等離子體產(chǎn)生的高溫使用試樣*分解形成激發(fā)態(tài)的原子和離子,由于激發(fā)態(tài)的原子和離子不穩(wěn)定,外層電子會(huì)從激發(fā)態(tài)向低的能級(jí)躍遷,因此發(fā)射出特征的譜線。通過光柵等分光后,利用檢測(cè)器檢測(cè)特定波長的強(qiáng)度,光的強(qiáng)度與待測(cè)元素濃度成正比。
x射線衍射XRD
X射線是原子內(nèi)層電子在高速運(yùn)動(dòng)電子的轟擊下躍遷而產(chǎn)生的光輻射,主要有連續(xù)X射線和特征X射線兩種。晶體可被用作X光的光柵,這些很大數(shù)目的原子或離子/分子所產(chǎn)生的相干散射將會(huì)發(fā)生光的干涉作用,從而影響散射的X射線的強(qiáng)度增強(qiáng)或減弱。由于大量原子散射波的疊加,互相干涉而產(chǎn)生zui大強(qiáng)度的光束稱為X射線的衍射線。
滿足衍射條件,可應(yīng)用布拉格公式:2dsinθ=λ
應(yīng)用已知波長的X射線來測(cè)量θ角,從而計(jì)算出晶面間距d,這是用于X射線結(jié)構(gòu)分析;另一個(gè)是應(yīng)用已知d的晶體來測(cè)量θ角,從而計(jì)算出特征X射線的波長,進(jìn)而可在已有資料查出試樣中所含的元素。